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Review



Inference

• Problem

Given a set E of evidence nodes, and a set Q of query
nodes, how to compute the posterior distribution P(Q|E)?

• More precisely

How to express P(Q|E) in terms of the CPTs P(Xi|pa(Xi))
of the BN, which are assumed to be given?

• Tools at our disposal

Bayes rule marginal independence
marginalization conditional independence
product rule
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Exact Inference: Variable Elimination

• Idea: Eliminate redundant calculations by storing
intermediate results in “factors”.

• A factor is a function that takes in values of random
variables, and produces a number.

• VE works by eliminating all variables in turn until there is
a factor with only the query variable.

• To eliminate a variable:
• join all factors containing that variable.
• sum out the influence of the variable on the new factor.
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VE Example

P(J) =
∑

M,A,B,E
P(J,M,A,B, E)

=
∑

M,A,B,E
P(J|A)P(M|A)P(B)P(A|B, E)P(E)

=
∑
A
P(J|A)

∑
M
P(M|A)

∑
B
P(B)

∑
E
P(A|B, E)P(E)

=
∑
A
P(J|A)

∑
M
P(M|A)

∑
B
(P(B)f 1(A,B)

=
∑
A
P(J|A)

∑
M
P(M|A)f2(A)

=
∑
A
P(J|A)f3(A)

= f4(J)
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VE Example

P(J) =
∑

M,A,B,E
P(J,M,A,B, E)

=
∑

M,A,B,E
P(J|A)P(M|A)P(B)P(A|B, E)P(E)

=
∑
A
P(J|A)

∑
M
P(M|A)

∑
B
P(B)

∑
E
P(A|B, E)P(E)

=
∑
A
P(J|A)

∑
M
P(M|A)

∑
B
(P(B)f 1(A,B)

=
∑
A
P(J|A)

∑
M
P(M|A)f2(A)

=
∑
A
P(J|A)f3(A)

= f4(J)

Q. What is the
elimination or-
der?
A. M,A,B,E
B. E,B,A,M
C. A,M,B,E
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VE Example

P(J) =
∑

M,A,B,E
P(J,M,A,B, E)

=
∑

M,A,B,E
P(J|A)P(M|A)P(B)P(A|B, E)P(E)

=
∑
A
P(J|A)

∑
M
P(M|A)

∑
B
P(B)

∑
E
P(A|B, E)P(E)

=
∑
A
P(J|A)

∑
M
P(M|A)

∑
B
(P(B)f 1(A,B)

=
∑
A
P(J|A)

∑
M
P(M|A)f2(A)

=
∑
A
P(J|A)f3(A)

= f4(J)

Q. What if we
first eliminate
M ?
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Exact Inference: Variable Elimination

• Time and space of VE is dominated by the largest factor
created.

• Can be exponential in the size of BN in the worst case.
• Heuristic: Eliminate the variable that will lead to the
smallest next factor being created

• In a polytree this leads to linear time inference (in size of
largest CPT).
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Exact Inference in Loopy BNs

• Transform a loopy BN into a polytree.
• Run the exact inference algorithm.

• Node Clustering
D

S2S1 S3

V

D

S

V

OLD NEW

CPTs grow exponentially when nodes are clustered.
• Cutset Conditioning

D

S2S1 S3

V

= S2S1 S3

V

+ S2S1 S3

V

P(S1|D=1) P(S2|D=1) P(S3|D=1)

D=0 D=1

P(S1|D=0) P(S2|D=0) P(S3|D=0)

Number of runs grows exponentially with the size of the
cutset.

• No efficient algorithm to get clustering or the minimal
cutset leads to maximally efficient inference.
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Approximate inference in loopy BNs



Motivation

• Formal results

Exact inference in belief networks is NP-hard.
Actually it is #P-hard (even worse).

• Practical tools

But many large loopy BNs remain useful models.
In these BNs, we must resort to approximate methods.

D1 D2

S2S1

Dk

Sn

. . .

. . .

diseases

symptoms
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Approximate inference

There are many strategies for approximate inference.
We will focus on stochastic simulation methods.

This lecture:

1. Prior sampling
2. Rejection sampling
3. Likelihood weighting
4. Markov chain Monte Carlo (MCMC) - Gibbs Sampling

But before we can describe the above methods,
we must review some basic ideas in sampling ...
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Sampling Intuition

Suppose we have a (biased) coin but we don’t know the P(H).

• How can we estimate P(H)?
• When will we get the correct probability?
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Sampling

Basic Idea:

• Draw N samples from a sampling distribution S.
• Compute an approximate posterior probability.
• Show that this converges to the true probability P.

We can apply similar intuition for inference in BNs -> Generate
samples from a BN.

15 / 33



Sampling a discrete random variable X ∼ P(X)

Let X be a discrete random variable with probabilities P(X=xi).
Suppose we can generate random numbers uniformly in [0, 1)
(e.g. random() in python).

• Problem

How to sample values of X so that repeated samples are
distributed according to P(X)?

• Solution

Note that P(X=xi) defines a partition of unity, which maps
a random number r ∈ [0, 1) into a discrete value of X.

0 1

…P(X=x2)P(X=x1) P(X=xk-1) P(X=xk)
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Sampling a discrete random variable X ∼ P(X)

C P(C)
orange 0.6
blue 0.1
green 0.3

1. Get sample u from uniform distribution
over [0,1).

2. Assign discrete value of C.
• 0 ≤ u < 0.6, C ← orange
• 0.6 ≤ u < 0.7, C ← blue
• 0.7 ≤ u < 1, C ← green

8 samples generated:
orange, green, orange, blue, orange, orange, green, orange

P(C = green)?
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Generative Model

Belief Network is a generative model. We can sample from the
distribution represented by the BN.

Idea: Generate one variable at a time in topological order.
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Alarm example

A

B

J M

E
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Alarm example

• Joint sample

To draw a joint sample {b, e,a, j,m}
from P(B, E,A, J,M), it is enough to
draw the individual samples:

b ∼ P(B)
e ∼ P(E)
a ∼ P(A|B=b, E=e)
j ∼ P(J|A=a)
m ∼ P(M|A=a)

• Convergence in the limit

P(b, e,a, j,m) = lim
N→∞

count(B=b, E=e,A=a, J= j,M=m)

N
.
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Prior Sampling from the joint distribution in a discrete BN

Let {X1, X2, . . . , Xm} be discrete random variables in a BN.

• Problem

How to sample values of {X1, X2, . . . , Xm} so that repeated
samples are distributed according to P(X1, X2, . . . , Xm)?

• Solution

The BN defines a generative model with joint distribution

P(X1, X2, . . . , Xm) =
m∏
i=1

P(Xi|pa(Xi)).

To draw samples, we can simply take Xi ∼ P(Xi|pa(Xi)).
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Approximate inference

• Problem

Let Q denote a set of query nodes.
Let E denote a set of evidence nodes.
How can we calculate estimate P(Q|E)?

• Challenge

While easy to sample from the BN’s joint distribution,
it may be much harder to sample directly from P(Q|E).

• Solutions

1. rejection sampling (very inefficient)
2. likelihood weighting (more efficient)
3. MCMC (most efficient)
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Rejection sampling in BNs

• Problem

Let Q denote a set of query nodes.
Let E denote a set of evidence nodes.
How to estimate P(Q=q|E=e)?

• Solution

Generate N samples from the BN’s joint distribution.
Discard (or reject) the samples where E 6= e.
Count the samples N(q, e) where Q=q and E=e.
Count the samples N(e) where E=e.
Take the ratio of these counts:

P(Q=q|E=e) ≈ N(q,e)
N(e) where N(q, e) ≤ N(e) ≤ N
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Example for rejection sampling

Problem: Estimate P(a0|c1,d1)
Samples:
a1,b1, c0,d0
a0,b1, c1,d0
a1,b1, c0,d1
a1,b1, c1,d1
a1,b0, c0,d0
a0,b1, c1,d1

Q. How many samples will
be rejected?
A. 6 B. 2 C. 4
D. 3 E. 0
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Example for rejection sampling

Problem: Estimate P(a0|c1,d1)
Samples:
a1,b1, c0,d0
a0,b1, c1,d0
a1,b1, c0,d1
a1,b1, c1,d1
a1,b0, c0,d0
a0,b1, c1,d1

Q.Estimate of P(a0|c1,d1)
using rejection sampling?
A. 1/2 B. 2/3 C. 1/4
D. 1/3 E. 0

25 / 33



Example for rejection sampling

X

Y E

Q

• Sample N times:

xi ∼ P(X)
yi ∼ P(Y|X=xi)
ei ∼ P(E|X=xi)
qi ∼ P(Q|Y=yi, E=ei)

• Define the indicator function:

I(z, z′) =

{
1 if z=z′

0 if z 6=z′

• Estimate from ratio:
P(Q=q|E=e) ≈ N(q, e)

N(e)
=

∑N
i=1 I(q,qi)I(e, ei)∑N

i=1 I(e, ei)
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Properties of rejection sampling

X

Y E

Q

• It converges in the limit:

lim
N→∞

N(q, e)
N(e)

= P(Q=q|E=e)

• But it is extremely inefficient:

It discards all samples without E = e.
It converges very slowly for rare evidence.

How can we do better?
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2. Likelihood weighting

• Key idea

Instantiate evidence nodes instead of sampling them.
Weight each sample using CPTs at evidence nodes.

• Intuition

“Cheat” by fixing the evidence nodes to their desired
values.
“Correct” for cheating by penalizing especially unlikely
values.

• Benefits

No discarding of uninformative samples.
No wasted computation.
Faster convergence.
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Example for likelihood weighting

How to estimate P(Q=q|E=e)? X

Y E

Q

• Sample N times:

xi ∼ P(X)
yi ∼ P(Y|X=xi)
qi ∼ P(Q|Y=yi, E=e) Note: E is fixed to e.

• Estimate from ratio:

P(Q=q|E=e) ≈
∑N

i=1 I(q,qi)

likelihood weight︷ ︸︸ ︷
P(E=e|X=xi)∑N

i=1 P(E=e|X=xi)

• Compare to rejection sampling:

P(Q=q|E=e) ≈
∑N

i=1 I(q,qi)I(e, ei)∑N
i=1 I(e, ei)
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Example with multiple evidence nodes

How to estimate P(Q=q|E1=e, E2=e′)?

X

Y

E1

Q

E2

• Sample N times:

xi ∼ P(X)
yi ∼ P(Y|X=xi)
qi ∼ P(Q|Y=yi, E1=e, E2=e′) Note: (E1, E2) fixed to (e, e′)

• Estimate from ratio:

P(Q=q|E1=e, E2=e′) ≈
∑N

i=1 I(q, qi)

product of likelihood weights︷ ︸︸ ︷
P(E1=e|X=xi) P(E2=e′|E1=e)∑N

i=1 P(E1=e|X=xi) P(E2=e′|E1=e)

• Compare to rejection sampling:

P(Q=q|E=e) ≈
∑N

i=1 I(q,qi) I(e, e1i) I(e′, e2i)∑N
i=1 I(e, e1i) I(e′, e2i) 30 / 33



Example for likelihood weighting sampling

Problem: Estimate P(a0|c1,d1)
Samples:
a0,b1, c1,d1
a1,b0, c1,d1
a0,b1, c1,d1

Q.Estimate of P(a0|c1,d1)
using likelihood weight-
ing?
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Properties of likelihood weighting

X

Y E

Q

• It converges in the limit:

lim
N→∞

∑N
i=1 I(q,qi)P(E=e|X=xi)∑N

i=1 P(E=e|X=xi)
= P(Q=q|E=e)

• It’s more efficient than rejection sampling:

No samples need to discarded.
Descendants of evidence nodes are conditioned on
evidence.

• But it can still be very slow:

Q EX
The worst case for likelihood
weighting is when rare evidence is
descended from query nodes.
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That’s all folks!
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