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Review



Inference

- Problem

Given a set E of evidence nodes, and a set Q of query
nodes, how to compute the posterior distribution P(QI|E)?

- More precisely

How to express P(Q|E) in terms of the CPTs P(X;j|pa(X;))
of the BN, which are assumed to be given?

- Tools at our disposal

Bayes rule marginal independence
marginalization conditional independence
product rule
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Exact Inference: Variable Elimination

- ldea: Eliminate redundant calculations by storing
intermediate results in “factors”.

- Afactor is a function that takes in values of random
variables, and produces a number.

- VE works by eliminating all variables in turn until there is
a factor with only the query variable.

- To eliminate a variable:

- join all factors containing that variable.
- sum out the influence of the variable on the new factor.
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VE Example

PU)= > PU,M,A,B,E)

M,A,B,E

= " PUIAP(MIAYP(B)P(AIB, E)P(E)

M,A,B,E

_ZP”A ZP/\/HA ZP Z (AIB, E)P(E)
_ZP”A ZPM|AZ B)f1(A. B)
_ZPJ\AZ (MIA)F2(A)

M

_Z (JA)3(A

- f4(/)
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VE Example

PU)= > PU,M,A,B,E)

M,A,B,E
= Z P(j|A)P(M\A)P(B)P(A\B,E)P(E)
M,A,B,E
—ZP]\A ZP/\/HA ZP Z (AB, E)P(E)
_ZP”A ZP M|A Z fW(A B) Q. What is the
elimination or-
=D "PUIA)Y P(MIA)2(A) der
Z EM: A. MAB,E
_Z (JIA)f3(A B. E,BAM
C. AMB,E
—f4()
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VE Example

PU)= > PU,M,A,B,E)

M,A,B,E

= " PUIAP(MIAYP(B)P(AIB, E)P(E)

M,A,B,E

—ZP]\A ZP (M|A) ZP Z (A|B, E)P(E)
_ZPJ\A ZP M|AZ B)f (A, B)

Q. What if we
_ZP”A Z (M|A)2(A) first eliminate
M M?
_Z (JIA)f3(A
:f4(/)

8/33



Exact Inference: Variable Elimination

- Time and space of VE is dominated by the largest factor
Ccreated.

- Can be exponential in the size of BN in the worst case.

- Heuristic: Eliminate the variable that will lead to the
smallest next factor being created

- In a polytree this leads to linear time inference (in size of
largest CPT).
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Exact Inference in Loopy BNs

- Transform a loopy BN into a polytree.
- Run the exact inference algorithm.
- Node Clustering

® ®
e ©® ®» (5
® ©

CPTs grow exponentially when nodes are clustered.
- Cutset Conditioning

Number of runs grows exponentially with the size of the
cutset.
- No efficient algorithm to get clustering or the minimal

cutset leads to maximally efficient inference.
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Approximate inference in loopy BNs



- Formal results

Exact inference in belief networks is NP-hard.
Actually it is #P-hard (even worse).

- Practical tools

But many large loopy BNs remain useful models.
In these BNs, we must resort to methods.

diseases

@ symptoms
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Approximate inference

There are many strategies for approximate inference.
We will focus on stochastic simulation methods.
This lecture:

1. Prior sampling

2. Rejection sampling

3. Likelihood weighting

4. Markov chain Monte Carlo (MCMC) - Gibbs Sampling

But before we can describe the above methods,
we must review some basic ideas in sampling ...
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Sampling Intuition

Suppose we have a (biased) coin but we don’t know the P(H).

- How can we estimate P(H)?

- When will we get the correct probability?
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Sampling

Basic Idea:

- Draw N samples from a sampling distribution S.
- Compute an approximate posterior probability.

- Show that this converges to the true probability P.

We can apply similar intuition for inference in BNs -> Generate
samples from a BN.
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Sampling a discrete random variable X ~ P(X)

Let X be a discrete random variable with probabilities P(X=x;).
Suppose we can generate random numbers uniformly in [0, 1)
(e.g. random() in python).

+ Problem

How to sample values of X so that repeated samples are
distributed according to P(X)?

- Solution

Note that P(X=Xx;) defines a partition of unity, which maps
a random number r € [0,1) into a discrete value of X.

PX=x,)  P(X=x,) N P(X=x, 1) P(X=x,)
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Sampling a discrete random variable X ~ P(X)

1. Get sample u from uniform distribution
C P(C)
over [0/1).
orange | 0.6 2. Assign discrete value of C.
blue 0.1
- 0<u<0.6,C+ orange
green | 0.3

- 0.6<u<0.7,C+ blue
- 0.7<u<1,C<+ green

8 samples generated:

orange, green, orange, blue, orange, orange, green, orange

P(C = green)?
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Generative Model

Belief Network is a generative model. We can sample from the
distribution represented by the BN.

Idea: Generate one variable at a time in topological order.
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Alarm example

P(B=1) = 0.001 P(E=1) = 0.002

N

B | E | P(A=1]B, E)
0o 0.001
10 0.94
0|1 0.29
1 1 0.95

O

O.

A | P(J=1]A) A [ P(M=1]A)
0 0.05 0 0.01
1 0.9 1 0.7
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Alarm example

() (D&

[a"

- Joint sample

To draw a joint sample {b,e,a,j, m}

from P(B, E,A,J,M), it is enough to ® °

draw the individual samples:
b ~ P(B) ((D)) ((D))
e ~ P(E)

(
a ~ P(
J ~ P(A=qa)
m ~ P(MA=a)
- Convergence in the limit

P(b,e,a,j,m) = lim count(B=b,E=e,A=a,/=j,M=m)
N—oco N
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Prior Sampling from the joint distribution in a discrete BN

Let {X1,Xs,...,Xm} be discrete random variables in a BN.

- Problem

How to sample values of {X1,Xz,...,Xm} so that repeated
samples are distributed according to P(Xq, X2, ..., Xm)?

- Solution

The BN defines a generative model with joint distribution

P(X1, X2, Xm) = H P(Xi[pa(X;)).

To draw samples, we can simply take X; ~ P(Xj|pa(X;)).
21/33



Approximate inference

+ Problem

Let Q denote a set of query nodes.
Let E denote a set of evidence nodes.
How can we eatettate estimate P(Q|E)?

- Challenge

While easy to sample from the BN's joint distribution,
it may be much harder to sample directly from P(QIE).

- Solutions

1. rejection sampling (very inefficient)
2. likelihood weighting (more efficient)
3. MCMC (most efficient)
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Rejection sampling in BNs

- Problem

Let Q denote a set of query nodes.
Let £ denote a set of evidence nodes.
How to estimate P(Q=q|E=¢)?

- Solution

Generate N samples from the BN’s joint distribution.
Discard (or reject) the samples where E # e.

Count the samples N(g,e) where Q=g and E=e.
Count the samples N(e) where E=e.

Take the ratio of these counts:

P(Q=gq|E=e) ~ N@‘Zéf) where ’N(q,e) < N(e) SN‘
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Example for rejection sampling

Problem: Estimate P(aop|c1, d1)
Samples: 0 @ G
as, by, Co, do @
ao, b1, 1, do
as, b, Co, d A | B | PEA)
A P(A)
017b‘|7c77d‘| by 2 b0 174
a1 bo. co.d ) 5 a, | b, 3/4
1,90, Co, Uo a, 4/5 a; | by 173
Qo, by, ¢1, d; a, | b, 2/3
B | ¢ | PCIB)
g 1/
Q. How many samples will Bo | > B | D | P(DIB)
be reiected? bo | & | 45 b | do | 3/4
e rejected? b, | o | 35 o a, ”
A. 6 B. 2 C. 4‘ b1 C,q 2/5 b1 dO 1/3
D.3 E.O b, | d, 2/3
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Example for rejection sampling

Problem: Estimate P(ap|c1, d1) e @ G

Samples: @
ai, by, co, do
Ao, by, ¢1,dg A | B | PEA)
as, b, Co, d A P‘/A) 3 | by | 174
8 175 a, | b 3/4
as, by, ¢, d o | P
1, U1, L1, U1 a, 4/5 a, b, 3
ai, b, co, do o o | 2
B C P(C|B
Qo, b1, &1, d (CIB)
b, Co 1/5 B D P(D|B)
) b, (5 4/5 by | do 3/4
Q.Estimate of P(ag|cy,d1) b, | c Y o, | o i
using rejection sampling? by | o | 25 b, | do | 1/3
A.1/2 B.2/3 C.1/4 b, | d | 273
D.1/3 E.O
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Example for rejection sampling

- Sample N times:
Xi ~ P(X)
yi ~ P(Y[X=x)
e ~ P(E[X=x)
qi ~ P(QY=y;,E=e)

- Define the indicator function: @
N —
(2.7) = 1 Ffzfz
0 ifz#7

- Estimate from ratio: N
P(Q:C]|E:€) ~ N(Q7e) _ Zi:1 Il\(lqaqf)l(evei)
N(e) SN (e, e)
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Properties of rejection sampling

- It converges in the limit:

. N(g,e) o
fm ey — esale=e) @\
- But it is extremely inefficient: @

It discards all samples without E = e,
It converges very slowly for rare evidence.

] How can we do better?
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2. Likelihood weighting

- Key idea

Instantiate evidence nodes instead of sampling them.
Weight each sample using CPTs at evidence nodes.

- Intuition

“Cheat” by fixing the evidence nodes to their desired
values.

“Correct” for cheating by penalizing especially unlikely
values.

- Benefits

No discarding of uninformative samples.
No wasted computation.

Faster convergence.
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Example for likelihood weighting

How to estimate P(Q=q|E=¢e)?

- Sample N times: C@\

X~ P(X) @
yio ~ P(Y[X=Xx)
g ~ PQlY=y;,E=e) ] Note: E is fixed to e.‘

- Estimate from ratio: likelihood weight

N ——
~ 2i=1(9,9) P(E=elX=x)

Pla=glt=e) SN P(E=e|X=x)

- Compare to rejection sampling:

L Tl a)le.e)

P(Q=g|E=e) S l(e e)
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Example with multiple evidence nodes

How to estimate P(Q=ql|E1=e,E;=¢€')? ( >—’

- Sample N times: Q(><

X~ PX) @
yi ~ P(Y[X=x)
g ~ PQ|Y=y,Ei=e E,=¢) ’Note: (E1, E,) fixed to (e, €’)

- Estimate from ratio: product of likelihood weights

N (g, q) P(Er=elX=x,) P(E,=¢'|Ey=
P(Q:q|E1:e,Ez:e') ~ Z’:1 IEI(LQ) ( 9‘ )\) (7 c Q)
> i1 P(Ei=elX=x;) P(E;=¢'|E1=¢e)

- Compare to rejection sampling:

P(QIQ‘EIQ) ~ ZI 1 (q CI) (e eW/) (e/ﬂe2i)
ZI:W (eaeﬂ) (e 782i)
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Example for likelihood weighting sampling

Problem: Estimate P(aop|c1, d1) Q G G

Samples: @
aO7b17C17d1
ar, bo, 1, d Al s | e
Ao, b1, &1, dy b ol % 2
ag 175 a, | by 3/4
) a, 4/5 a b 1/3
Q.Estimate of P(agl|cy,dh) 31 bo 2/3
1 1
using likelihood weight- B | C | PCIB)
ing? by | S 175 B | D | P(DIB)
by, | ¢ 4/5 by | do 3/4
b, | < 3/5 by | d, 1/4
b, | ¢ 2/5 b, | do 1/3
b, | d, 2/3
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Properties of likelihood weighting

- It converges in the limit:

N . — =X;
B ey e R
@

- It's more efficient than rejection sampling:

No samples need to discarded.
Descendants of evidence nodes are conditioned on
evidence.

- But it can still be very slow:

The worst case for likelihood
Y ar
weighting is when rare evidence is

descended from query nodes.
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That's all folks!
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